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Abstract. The energy bands and the global density of states are computed for superconductor / normal-
metal superlattices in the clean limit. Dispersion relations are derived for the general case of insulating
interfaces, including the mismatch of Fermi velocities and effective band masses. We focus on the influence of
finite interface transparency and compare our results with those for transparent superlattices and trilayers.
Analogously to the rapid variation on the atomic scale of the energy dispersion with layer thicknesses
in transparent superlattices, we find strong oscillations of the almost flat energy bands (transmission
resonances) in the case of finite transparency. In small-period transparent superlattices the BCS coherence
peak disappears and a similar subgap peak is formed due to the Andreev process. With decreasing interface
transparency the characteristic double peak structure in the global density of states develops towards a
gapless BCS-like result in the tunnel limit. This effect can be used as a reliable STM probe for interface
transparency.

PACS. 74.45.+c Proximity effects; Andreev effect; SN and SNS junctions

1 Introduction

The artificial S/N superlattices consisting of alternating
superconductor (S) and normal-metal or semiconductor
(N) layers have been studied for some time already [1–9],
see also [10,11]. The recent advancement of nanofabrica-
tion technology and experimental techniques [12], as well
as intrinsically layered structure of high-Tc superconduc-
tors [13–15] has reinvigorated the long standing interest
in understanding the effects inherent to clean supercon-
ducting heterostructures [16–18]. The size and coherence
effects have been studied recently for double barrier SNS
and NSN junctions in the clean limit based on the solu-
tions of Gor’kov and Bogoliubov–de Gennes (BdG) equa-
tions [19–24].

In this paper we extend the previous approach of Tan-
aka and Tsukada [6] and Plehn et al. [8] to the more
general case of superlattices with finite interlayer trans-
parency. We present comprehensive and systematic anal-
ysis of the influence of interface transparency on the quasi-
particle band structure and density of states for wide
range of the superlattice parameters. Due to the phase co-
herence of electronic wave functions the energy spectrum
is gapless in superlattices with thin S layers and trans-
parent interfaces [24], and splits into almost flat bands
(transmission resonances) with decreasing transparency.
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For thick S layers, the subgap bands are formed due to
the Andreev reflection [25] which leads to the conversion
of Cooper pairs in superconducting layers into correlated
electrons and holes in the normal layers. Whereas the
calculations are performed in the clean limit, the influ-
ence of impurities on the density of states can be taken
into account by replacing the superconducting coherence
length with an effective one, as shown by Halterman and
Valls [26] in comparison with experiments of Moussy et
al. [12]. Our results for density of states in superlat-
tices with layer thicknesses smaller than the supercon-
ducting correlation length, qualitatively confirm main fea-
tures previously obtained by Bulaevskii and Zyskin [4] and
Buzdin et al. [5] for atomic-scale layered systems within
the tight binding approximation.

2 The model

The system under consideration is an S/N superlattice
in the clean limit, consisting of alternating superconduct-
ing and normal-metal (or semiconductor) layers of thick-
ness dS and dN , with insulating interfaces modelled as
thin potential-energy barriers. The superconducting lay-
ers are characterized by constant pair potential ∆0, and
zero phase difference, φ = 0, is assumed across the super-
lattice. Effective band masses and electrostatic potentials
of the two metals are mS (mN ) and US (UN ), respectively.
The superlattice is uniform in the x − y plane and the z
axis is perpendicular to the layers.
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Quasiparticle propagation in the superlattice is de-
scribed by the Bogoliubov–de Gennes equation

(
H0(r) ∆(r)
∆∗(r) −H∗

0 (r)

)
Ψ(r) = EΨ(r), (1)

where Ψ(r) =
(
u(r), v(r)

)
T is the two-component wave

function in the electron-hole space, the quasiparticle en-
ergy E is measured with respect to the chemical potential
µ, and the hamiltonian H0 within the superlattice period
a = dN + dS , for z ∈ (−dN , dS), is given by

H0(r) = −∇ �
2

2m(r)
∇ + Ŵ [δ(z) + δ(z + dN )]

+ U(r) − µ. (2)

The first term is the quasiparticle kinetic energy in the
effective mass approximation [16,27], the second term,
with Ŵ = �

2kFSZ/2mS, describes finite transparency
of S-N interfaces modelled as δ-function potential barri-
ers, and dimensionless parameter Z measures the barrier
strength. Fermi energies in N and S layers are EFN =
�

2k2
FN/2mN = µ−UN and EFS = �

2k2
FS/2mS = µ−US ,

respectively. We define the corresponding effective chem-
ical potentials as µN = µN (k‖) = EFN − (�2k2

‖/2mN)
and µS = µS(k‖) = EFS − (�2k2

‖/2mS), where k‖ is the
conserved quasiparticle momentum parallel to the layers.

The pair potential ∆(r) should be treated self-consis-
tently. For the sake of simplicity we used the stepwise
model with ∆(r) equal to constant ∆0 in S and zero
in N layers [8,19]. However, for S/N superlattices with
thin S layers, the effective ∆0 can be taken as the space-
averaged self-consistently determined pair potential, cor-
respondingly smaller than the bulk value [23]. For super-
lattices with thick S films, ∆0 can be set to the bulk value.

Solutions of BdG equation,

Ψ(r) =
(

u(z)
v(z)

)
eik‖·r, (3)

in N and S layers can be written in the form

(
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v(z)

)
N
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1
0

)
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(

1
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1

)
(4)

and
(
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v(z)

)
S

= C5 sin(k+
S z)

(
ū
v̄

)
+ C6 cos(k+

S z)
(

ū
v̄

)

+ C7 sin(k−
S z)

(
v̄
ū

)
+ C8 cos(k−

S z)
(

v̄
ū

)
. (5)

Here, Ω =
√

E2 − ∆2
0, k±

N =
√

2mN(µN ± E)/�
2, k±

S =√
2mS(µS ± Ω)/�

2 and the BCS coherence amplitudes are
ū =

√
(1 + Ω/E)/2 and v̄ =

√
(1 − Ω/E)/2.

Complex coefficients C1 through C8 are determined
from the boundary conditions at interfaces z = 0 and
z = −dN inside the primitive cell

(
uN(0)
vN (0)

)
=

(
uS(0)
vS(0)

)
, (6)

1
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(
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)
+
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Z

(
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v(0)

)
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1
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(
u′
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)
, (7)

eiKa

(
uN (−dN )
vN (−dN )

)
=

(
uS(dS)
vS(dS)

)
, (8)

eiKa

mN
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)
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(
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vN (−dN )

)
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1

mS

(
u′

S(dS)
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)
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Here, the Bloch condition Ψ(x, y, z + a) = eiKaΨ(x, y, z)
is used and the crystal momentum K is taken within the
first Brillouin zone, K ∈ (−π/a, π/a).

Dispersion relation E = En,k‖(K) can be written in
the following implicit form [8]

cos(Ka) = −D̃1/4 ±
√

(D̃1/4)2 − D̃2/4 + 1/2

≡ F±(E, k‖), (10)

where D̃1 and D̃2 are defined in terms of dimensionless
quantities E/∆0, k‖/kFS , Z, dN/ξ0, dS/ξ0, mN/mS ,
EFN/EFS , and ∆0/EFS (see the Appendix).

Global density of states (for both spin orientations)
per unit area of the cross section LxLy, averaged over a
primitive cell, is given by

g(E) =
1

LxLy

∑
σ,k‖,K

δ(E − E(k‖, K))

=
1
π

∫
dk‖ k‖

∑
i=+,−

a

2π

∫
dKi δ(E − E(k‖, Ki))

=
a

2π2

∫
dk‖ k‖

∑
i=+,−

∣∣∣∣ ∂Ki

∂E(k‖, Ki)

∣∣∣∣
E(k‖,Ki)=E

,

(11)

where K±(E) are the solutions of equation (10), and
∣∣∣∣ ∂Ki

∂E(k‖, Ki)

∣∣∣∣ =
1
a

∣∣∣∣∂ arccos[F i(E, k‖)]
∂E

∣∣∣∣ . (12)

In accordance with equation (10), the integration over k‖
[or µS = µS(k‖)] in equation (11) is limited to the intervals
given by

(D̃1/4)2 − D̃2/4 + 1/2 ≥ 0 (13)

and
|F±(E, k‖)| ≤ 1. (14)

In the following, g(E) is normalized to the normal-state
value ḡ = (mSdSkFS + mNdNkFN )/π2

�
2.
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Fig. 1. Energy bands as a function of the S layer thickness
dS, for S/N superlattices with thick N layers, dN = 3ξ0, trans-
parent interfaces, Z = 0, and k‖ = 0. Andreev bound states
(E < ∆0) and geometrical resonances (E > ∆0) for the cor-
responding SNS and NSN trilayers are shown for comparison
(solid curves).

3 Energy bands and density of states

The dispersion relation, equation (10), is solved numeri-
cally and the global density of states is calculated from
equation (11) for various superlattices and for zero phase
difference φ = 0. In the following, we focus on the in-
fluence of finite interface transparency on quasiparticle
band structure and density of states. For simplicity, this
is illustrated for equal effective masses and Fermi wave-
vectors, mN/mS = 1 and kFN/kFS = 1. Supercon-
ductors are characterized by the bulk value of the pair
potential ∆0/EFS = 10−3, which corresponds to the zero-
temperature BCS coherence length ξ0 = �

2kFS/(πmS∆0)
∼ 103 Å.

Energy bands for S/N superlattices with thick N lay-
ers, transparent S-N interfaces and quasiparticles propa-
gating perpendicular to the layers (k‖ = 0) are shown in
Figure 1. Quasicontinuum of energy states corresponding
to the crystal momentum within the first Brillouin zone,
K ∈ (−π/a, π/a), is indicated by shading the band width
calculated from equations (13) and (14).

For the corresponding SNS trilayer, Andreev bound
states, E < ∆0, in the normal interlayer of thickness dN ,
for zero phase difference across the junction, transparent
interfaces, and k‖ = 0 are given by [28]

En

∆0
= π2

[
n +

1
π

arccos
(En

∆0

)] 1
dN/ξ0

, (15)

where n = 0, 1, . . .. In this case the Andreev bound states
are double degenerate. Geometrical resonances, E > ∆0,
for the corresponding NSN junction with S interlayer of
thickness dS , and Z = 0, k‖ = 0 are given by

En

∆0
=

√
1 + n2

π4

(dS/ξ0)2
, (16)

Fig. 2. Characteristic dispersion of energy bands illustrated
for dN = 3ξ0, Z = 0, k‖ = 0, and (a) dS = 3.0005dN , and
(b) dS = 3.0013dN . Bands displayed in (a) are double degen-
erate for all K. Dotted curves represent dispersion for finite
transparency Z = 0.5.

which follows from the condition dS(k+
S − k−

S ) = 2nπ,
where n = ±1,±2, . . .. At these energies the Andreev re-
flection vanishes and the electron is transmitted without
creation or annihilation of Cooper pairs [22–24]. Both An-
dreev bound states and geometrical resonances of the cor-
responding SNS and NSN trilayers are shown in Figure 1
for comparison.

In S/N superlattices with thick S layers, the energy
band structure above the gap, E > ∆0, is also affected by
the Andreev process [17,18]. With increasing dN , the band
structure dependence on dS/dN remains qualitatively the
same as in Figure 1, with compression and lowering of
energy bands that enter the superconducting gap [29].
Andreev reflection is the fundamental mechanism that de-
termines the quasiparticle band structure in S/N superlat-
tices. However, qualitatively the same results as shown in
Figure 1 are obtained for semiconductor / normal-metal
superlattices [30,31]. Characteristic dispersion of energy
bands, shown in Figure 1, is illustrated in Figure 2 for
two close thicknesses of the S layer. For some layer thick-
nesses the energy bands are double degenerate for all K,
Figure 2a, in contrast with the usual degeneracy at high-
symmetry points only (at the center and the ends of the
first Brillouin zone), Figure 2b. These two types of disper-
sion alternate rapidly with the change of layer thicknesses
on the atomic scale k−1

F , while the band width changes on
the macroscopic scale.

Finite interface transparency, as well as mismatch of
effective masses and Fermi wave-vectors [29], lift the de-
generacy in E(K), Figure 2, and change the band struc-
ture, Figure 3. For large Z, energy bands split into pairs
of flat bands independent of K, and there is a significant
change of the band energy below the superconducting gap.
Approaching the tunnel limit for Z � 1, pairs of adjacent
flat energy bands transform into bound states of isolated
films defined by dSk±

S = n1π and dNk±
N = n2π. However,

this does not imply that the energy band splitting and
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Fig. 3. Energy bands as a function of Z, for k‖ = 0 and for
two particular S/N superlattices: (a) dS = dN = 3ξ0 and (b)
dS = 15ξ0, dN = 3ξ0. Arrows indicate the bound states in the
tunnel limit.

Fig. 4. Energy ‘bands’ for dN = 3ξ0, k‖ = 0 and Z = 4.
Shading is produced by the rapid oscillatory dependence of
flat energy bands on the S layer thickness.

decrease of the band widths due to the flattening will be
visible in the E vs. dS(N) plot (cf. Figs. 1 and 4). Energy
levels for Z � 1 oscillate rapidly with layer thicknesses on
the atomic scale k−1

F , Figure 5, so that E vs. dS(N) curves
fill the energy space quasicontinuously on the macroscopic
scale, Figure 4. This implies erasing of the band structure
and localization of quasiparticle states in real superlattices
with finite interface transparency and slightly unequal lay-
ers.

Previous analysis has been made for quasiparticles that
propagate perpendicular to the layers. Dependence of en-
ergy bands on k‖, i.e. on the effective chemical potential

Fig. 5. Rapid oscillatory dependence of energy bands on the S
layer thickness for nontransparent superlattices. Energy disper-
sion E(K) is shown by shading for all K, solid curves represent
E(0).

Fig. 6. (a) Normalized energy bands E/∆0 as a function of
µS = µS(k‖), for S/N superlattice with dS = 15ξ0, dN = 3ξ0

and Z = 0, and (b) the corresponding global density of states
g(E) normalized to the normal-state value g. Global density
of states for Z = 0.5 (dashed curve), and in the tunnel limit
(dotted curve) are given for comparison.

µS(k‖), is illustrated for Z = 0 in Figures 6a and 7a.
Band widths decrease with the increase of k‖, and bands
split into pairs of bound states (flat bands) for very large
parallel momentum [8], similar to the tunnel limit. The
effect of erasing the band structure with finite interface
transparency is enhanced with the increase of k‖. Corre-
sponding changes of the global density of states are shown
in Figures 6b and 7b. Integration of equation (11) is per-
formed over the shaded regions in Figures 6a and 7a, where
equations (13) and (14) are satisfied.

Now we shall focus on energy bands and the density of
states in thin-layer S/N superlattices, where coherence ef-
fects are pronounced and ballistic transport is more likely
to take place [24]. Dependence of energy bands on the
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Fig. 7. (a) Normalized energy bands E/∆0 as a function
of µS = µS(k‖), for S/N superlattice with dS = dN = 3ξ0

and Z = 0, and (b) the corresponding global density of states
g(E) normalized to the normal-state value g. Global density
of states for Z = 0.5 (dashed curve), and in the tunnel limit
(dotted curve) are given for comparison.

Fig. 8. (a) Energy bands for S/N superlattices with dS = dN ,
k‖ = 0 and Z = 0. (b) Erasing of the band structure with
decrease of interface transparency is shown for Z = 1.

superlattice period is illustrated in Figure 8 for dS = dN ,
k‖ = 0, and for both Z = 0 and Z = 1. It can be seen that
the band structure in transparent thin-layer superlattices
differs significantly from the thick-layer case considered in
reference [8]. For thin layers, dispersion of energy bands is
significant, with only a small part of the lower band laying
below ∆0. Energy bands as a function of k‖, and for var-
ious interface transparencies are shown in Figure 9. For
Z = 0 and dS = dN , the most striking feature is the onset

Fig. 9. Energy bands as a function of µS = µS(k‖), for S/N
superlattice with thin layers, dS = dN = 0.1ξ0, and for various
interface transparencies.

of the lowest energy band at the midgap, practically for
any k‖. This is not the case for thick-layer superlattices,
where band energy decreases more rapidly down to zero
with the increase of k‖, resulting in the left-side “tail” of
the subgap peak in the density of states, Figures 6 and 7.
For thin-layer superlattices, finite interface transparency
introduces the resonance effect: energy bands penetrate
periodically below the midgap with the increase of k‖.
This is more pronounced as Z gets larger, Figure 9. The
corresponding global densities of states for various inter-
face transparencies are shown in Figure 10.

For transparent interfaces, the density of states is BCS-
like with the energy gap Eg smaller than the pair poten-
tial ∆0. The value of Eg for transparent interfaces, equal
effective masses, and equal Fermi energies can be obtained
from the well known dispersion relation [6,32,33]

cos[(K± ± kzF )a] = cos(qδ dS) cos(q dN )

− δ−1 sin(qδ dS) sin(q dN ), (17)

which is a special case of equation (10). Here, kzF =√
k2

F − k2
‖, δ = Ω/E, and q = mE/�

2kzF . For dS , dN → 0,
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Fig. 10. Global density of states for S/N superlattice with
thin layers, dS = dN = 0.1ξ0, and for various interface trans-
parencies. Tunnel limit is indicated in the bottom panel (dot-
ted curve). Note that the effective ∆0 varies with Z, being the
smallest for Z = 0 (top panel) and reaching the bulk value in
the tunnel limit (bottom panel).

from equations (11) and (17) exactly follows [1]

Eg =
∆0

1 + dN/dS
. (18)

Practically, this simple relation remains valid for the layer
thicknesses up to one or two coherence lengths ξ0, due
to the weak variation of the bottom of the lowest energy
band with the layer thickness, Figure 8a.

With decreasing interfacial transparency, the subgap
peak in g(E) at Eg decays, and the usual BCS coher-

ence peak at ∆0 reenters as the superconducting layers
become more isolated. In the tunnel limit, the BCS peak
at ∆0 is completely restored, Figure 10 (dotted curve in
the bottom panel). For thicker layers dS ∼ dN ∼ ξ0, the
coherence effects are less pronounced and the tunnel limit
behavior is practically reached for smaller Z ∼ 1. Previ-
ously, this double peak structure in the density of states
of S/N superlattices is obtained within the tight bind-
ing approximation for atomic-scale layered systems, and
apparently observed in high-Tc intrinsically layered super-
conductors [4,5,14].

4 Conclusion

We have derived the dispersion relation for superconduc-
tor / normal-metal (semiconductor) superlattices in the
clean limit, generalizing the previous expression of Plehn
et al. [8] to include an arbitrary interface transparency and
mismatch of effective band masses. The obtained general
dispersion relation is used for numerical analysis of the
influence of interface transparency on energy band struc-
ture and density of states in metallic S/N superlattices.
Although we used stepwise approximation for the pair
potential, our results will not be altered significantly by
the fully self-consistent numerical calculations [8], if an
effective pair potential (smaller than the bulk value) is
taken for thin S layers, and simply the bulk value in the
cases of thick S layers, low transparency, and mismatch of
Fermi wave-vectors or band masses. Our results confirm
previously obtained features in the metallic S/N superlat-
tices [6–8], including the limiting cases of double barrier
SNS or NSN trilayers [34,18,20–24], and are in a good
qualitative agreement with the results obtained within the
tight binding approximation [4,5].

Consequences of the quantum interference effect are
strong and rapid (on the atomic scale) geometrical os-
cillations with layers thickness of the energy dispersion
in transparent superlattices, and of the almost flat en-
ergy bands (transmission resonances) in the case of finite
transparency. Oscillations in the latter case are practically
within the band width of the corresponding fully trans-
parent superlattice. Practically, this could imply the lo-
calization of quasiparticle states in superlattices with low
interface transparency.

Characteristic changes of quasiparticle band structure
with decreasing interface transparency are suitably re-
flected in the global (averaged on the lattice period) den-
sity of states, which can be directly measured by STM
techniques [14,12]. Oscillations of the density of states
are simply related to the band structure for transparent
superlattices with thick layers [6]. However, superlattices
with the period smaller than the coherence length, when S
and N layers lose their individual properties due to strong
phase coupling by Andreev scattering do not differ sig-
nificantly from a bulk BCS superconductor, except for a
subgap peak in the global density of states instead of the
superconductor coherence peak at ∆0 [4]. For transpar-
ent interfaces, position of the subgap peak is simply re-
lated to the lattice parameters. For finite interface trans-
parency, we find the characteristic double peak structure
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in the global density of states [5]. With decreasing trans-
parency the subgap peak decreases, only slightly changing
the position, while the coherence peak at the effective ∆0

grows, and the density of states develops towards the gap-
less BCS result for the bulk superconductor in the tunnel
limit. We point out that this double-peak structure of the
global density of states in small-period clean-metal S/N
superlattices can be used as a reliable experimental probe
for interface transparency.

We are grateful to Ivana Petković, Miloš Božović, and Boris
Grbić for useful discussions. The work has been supported by
the Serbian Ministry of Science, Project No. 1899.

Appendix

From the boundary conditions, equations (6–9), the dis-
persion relation, equation (10), is expressed through D̃1 =
D1/D0 and D̃2 = D2/D0, where

D0 = m2
r k−

N k+
N k−

S k+
S

(
ū2 − v̄2

)2
, (19)

D1 = F0 + F1(ZkFS) + F2(ZkFS)2, (20)

D2 = G0 + G1(ZkFS) + G2(ZkFS)2

+ G3(ZkFS)3 + G4(ZkFS)4. (21)

Here, mr = mN/mS , F0 through F2 and G0 through G4

are given by
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s−S s+

S ū2 v̄2
(
c−N c+

N − 1
) (

k−
S

2 + k+
S

2
)

+ k−
S k+

S

[ (
1 + 2 c−N c+

N c−S c+
S

) (
ū4 + v̄4

)
− 2 ū2 v̄2 (

c−S c+
S + c−N c+

N + c−N c+
N c−S c+

S

) ]}
+ s−N s+

N

{
2k−

S k+
S ū2 v̄2 (

c−S c+
S − 1

) (
k−

N
2 + k+

N
2)

+ s−S s+
S

[
ū4 (

k−
N

2k+
S

2 + k+
N

2k−
S

2)
+ v̄4 (

k−
N

2k−
S

2 + k+
N

2k+
S

2) ]})
, (25)

G1 = − 2 mr

(
ū2 − v̄2)

×
[
s+

N

(
mr s−N

{
c+
S k+

S s−S
[
k−

N
2 ū2−k+

N
2 v̄2

+ m2
r k−

S
2

(
ū2 − v̄2

) ]
+ c−S k−

S s+
S

[
k+

N
2 ū2 − k−

N
2 v̄2 + m2

r k+
S

2
(
ū2 − v̄2

) ]}
+ c−Nk−

N

{ − 2c−S c+
S m2

rk
−
S k+

S

(
ū2−v̄2)

+ s−S s+
S

[
k+

N
2 (

ū2 − v̄2) + m2
r

(
k+

S
2ū2 − k−

S
2v̄2) ]})

+ c+
N k+

N

(
− 2 c−S mr k−

S

(
c+
S mr s−N k+

S + c−N k−
N s+

S

)
× (

ū2 − v̄2
)

+ s−S
{ − 2 c−N c+

S mr k−
N k+

S

(
ū2 − v̄2

)
+ s−N s+

S

[
k−

N
2

(
ū2 − v̄2

)
+ m2

r

(
k−

S
2 ū2 − k+

S
2 v̄2) ]})]

, (26)

G2 = − m2
r

(
ū2 − v̄2)

×
(
2 c−S mr k−

S

{
2 c+

S mr s−N s+
N k+

S

(−ū2 + v̄2)
+ s+

S

[ − c−N k−
N s+

N

(
ū2 − 2 v̄2)

+ c+
N k+

N s−N
(−2 ū2 + v̄2

) ]}
+ s−S

(− 2c+
N k+

N

[
c+
S mr s−N k+

S

(
ū2 − 2 v̄2

)
+ 2 c−N k−

N s+
S

(
ū2 − v̄2

) ]
+ s+

N

{
s−N

[
k−

N
2 + k+

N
2 + m2

r

(
k−

S
2 + k+

S
2) ]

s+
S

(
ū2 − v̄2)

+ 2 c−N c+
S mr k−

N k+
S

(−2 ū2 + v̄2) }))
, (27)

G3 = 2m3
r

(
ū2 − v̄2)2 {

mr k+
S s−N s+

N s−S c+
S

+ s+
S

[
k−

N c−N s+
N s−S + s−N

(
mr k−

S c−S s+
N + k+

N c+
N s−S

) ]}
,

(28)

G4 = m4
r s−N s+

N s−S s+
S

(
ū2 − v̄2

)2
, (29)

where s±N ≡ sin(k±
NdN ), c±N ≡ cos(k±

NdN ), s±S ≡
sin(k±

S dS), and c±S ≡ cos(k±
S dS). For Z = 0 and mr = 1

expressions for D̃1 and D̃2 reduce to the results given in
reference [8].
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